A recent report by Quadrant Knowledge Solutions, a Massachusetts-based consulting and research firm, on the market outlook for Product Lifecycle Maintenance (PLM), revealed some interesting statistics about industries adopting PLM. While around 80% of the market is still centred around the aerospace, automotive, high-tech and industrial equipment industries, other industries, such as retail and consumer goods, can see the benefit in adopting a lifecycle approach to their product management. The healthcare sector is steadily recognizing the benefits that PLM can bring, both in regulatory compliance and in product development. Quadrant reports on this sector as comprising 3.1% of the overall market, and it is expected to grow by about 7% annually. Pharmaceutical and medical device companies in particular are seeing dramatic improvements in time to market where they have adopted PLM.
Table of Contents
ToggleChallenges for the Pharmaceutical Industry
Organizations that develop pharmaceutical solutions for both chronic and acute diseases find themselves between a rock and a hard place – the urgent demand from patients and their physicians and the regulatory constraints of bodies like the FDA. Research conducted by the Tufts Center for Drug Development and last updated in 2016, revealed the following statistics:-
- Costs to bring a new drug to market averages $2,6 billion
- This excludes an additional $300 million in further R&D when the drug is available
- The time taken from discovery to launch is 10-12 years
- Only 12% of new drugs make it through the clinical trials
Although this research was conducted on a sample of drugs developed between 1995 and 2007, the risks and costs incurred in bringing a new drug to market have probably increased rather than decreased. Earlier research in 2003 had a success rate double the 12% of the later findings, and considerably lower costs.
One of the main contributors to the lead time and costs associated with getting a new product to market is the pharmaceutical process and the regulatory constraints built into the process. The process has not changed significantly since the 1980s and has not taken advantage of the changes in technology, although the drug development itself is at the cutting edge of science and technology.
This is where PLM comes in.
How PLM Disrupts the Old Way of Doing Things
What the pharmaceutical industry needs to embrace is something that the automotive industry latched on to over 20 years ago. Product lifecycle maintenance follows the entire lifecycle of product development from conception to end-of-life, and brings transparency and collaboration to the process. Implementing PLM removes many obstacles from the development path.
Working in Silos
The long lead time in the pharmaceutical lends itself to isolation between the various stakeholders in the process. What is more, during the decade taken to develop the drug, there will be natural turnover of staff and loss of tacit knowledge. Another factor is outsourcing some of the process, where visibility and understanding can be lost. There is a need for all the outputs of the disparate teams and groups to be merged into a comprehensive view. Merck define 3 types of silos :-
- siloed thinking by people involved in the process
- siloed processes and workflows
- siloed technologies – disparate applications that do not integrate
This is where PLM can assist.
Exhaustive Documentation
The need to document every step of drug development is a major constraint imposed by the FDA and other regulatory bodies – it is paper-based and requires up to 100 000 pages of evidence of testing, trials, approvals and every other component associated with the drug being developed. Where participants have been working in silos, the problem of keeping a unified record is exacerbated. Most PLM offerings have content management features that remove the risk of missing documentation.
But More is Needed
NeoPLM is a specialist vendor, founded by CEO Cathal Strain, who had 30 year’s experience at Pfizer before embarking on this venture. He points out a few pitfalls of most other offerings in the market.
- PLM is designed around CAD systems, and not batch-based manufacturing, like pharmaceuticals
- The requirement for documented evidence from the regulatory authorities hampers the ability of companies to streamline their way of working
- While all PLM suites have maintenance and decommissioning as part of the lifecycle, the ongoing monitoring of drugs once on the market and in use for the lifetime of the drug is far more complex and intensive than for products such as an automobile or a building.
This does not mean that PLM products developed for engineers cannot do the job. Vendors such as Dassault have developed and acquired specialist PLMs that are targeted at the chemical and healthcare industries, especially biotech organizations that manufacture medical devices. What is remarkable, however, is how slow the healthcare industry is to adopt a PLM approach. While leaders such as Sanofi and Merck have taken on the challenge, the majority of industry players are lagging behind. The vendors who offer PLM solutions are all leaders in enterprise, scientific and engineering software and every one of them has healthcare customers and solutions. Whether they choose a specialist pharmaceutical PLM vendor such as NeoPLM or MasterControl, or choose products from vendors such as Oracle, Dassault, Siemens or PTC, implementing PLM will accelerate their drug development process, while reducing costs and risks.
What is certain is that those companies that are slow in adopting a PLM vision of their business will have to adapt as their competitors outperform them. Their shareholders will be reluctant to support them if they cannot keep pace.Â