Giving Graduates a Competitive Advantage with PLM

Universities globally are being tasked with attracting students into the STEM (science, technology, engineering and mathematics) disciplines to provide the workforce needed for this century. In order to become competent professionals in their field, undergraduates and graduates need to acquire skills in the software applications they will use in their careers, such as CAD and GIS software or simulation suites that perform finite element analysis (FEA) or computational fluid dynamics (CFD). Vendors of these software products know that the students of today are their customers of the future and are happy to partner with universities or provide their software at academic rates. A working knowledge of AutoCAD and/or Solidworks are definite enhancements to any résumé. However, this only partially equips the graduate for life in the business world. He or she will learn how their skills acquired at university will integrate into the organization once they start working there, but they could have the edge on other applicants if they already had this knowledge. This is where training in Product Lifecycle Management (PLM) is so important – it provides a holistic understanding of product development from cradle to grave. 

Currently, only a few universities offer specialization in PLM, but there is a growing trend to incorporate it into relevant curricula. The trailblazer in PLM education is Purdue University, who opened the Product Lifecycle Management Center of Excellence in 2002, which was renamed the Digital Enterprise Center. The focus of the Center is on enabling organizations to make the transition to digital enterprises. Undergraduate, graduate and professional courses and certifications are offered in all aspects of Product Lifecycle Management.

Other universities are following suit, such as Clemson University in South Carolina and Oakland University in Michigan. Such initiatives are collaborative, supported by industry leaders who need an institution that can upskill their existing workforce in PLM, as well as provide future employees from their alumni. 

Leslie Miller, general manager for GE Power and Water, which is based in North Carolina, is quoted on Clemson’s website as to why PLM is an important inclusion for any university or technical institute:-

Product Lifecycle Management software and processes revolutionize how our industry designs, manufactures, services and operates our products. We are creating a digital thread that unites product configuration, analytical results and operational data. A university program that can research PLM processes and applications, and educate PLM-proficient new engineers, is critical for General Electric’s continued innovation.

Leslie Miller – GE Power and Water




One of the main hurdles in the inclusion of PLM in a University’s portfolio is that its precepts cut across different faculties, and it is STEAM (science, technology, engineering, arts and mathematics ), not just STEM. For a start, Lean Manufacturing is a readily available subject but is mainly taught at business schools. Product management involves marketing, which is already straddling an uneasy path between arts and sciences, with the growth of Martech. Graphics designers are part of the equation, using rendering tools like Keyshot to produce a vision of the finished product. To conceptualize a product, design and build it, bring it to market, service and maintain it and eventually to retire it, requires many different skillsets and roles. To understand how it all fits together and the processes that support the value chain are the answers that enrolling in a PLM degree or course needs to provide, as well as a familiarity with the tools and platforms used to interact with the data, processes and artifacts. PLM has also been subject to a major disruption, the growth of the Internet of Things (IoT). 


The Internet of Things and Digital Twins

IoT is reshaping business across a wide spectrum of industries. The ability to record real-time data in the field via sensors and other devices is creating huge volumes of data wherever they are placed. Among the myriads of benefits that can be realized by judicious extraction and analysis of data, whether by human or artificial intelligence, understanding how products actually work in the live environment can be collected and collated. This has changed the approach to design and simulation, with the increasing use of “digital twins”, prototypes that are fed the live data to test, understand and improve design. Crash test dummies and driving cars into brick walls is obsolete, when the same results can be achieved with a virtual simulation. The ability to build digital twins and collect and interpret IoT data is an essential adjunct to any PLM infrastructure.

Which Software Vendor?

 The institution offering PLM must decide which PLM vendor will be appropriate for the software they acquire. Fortunately, the number of vendors in this space is limited in this space, although the choice is growing. There are three main contenders and a few alternatives. The choice is simplified via two reports produced by Forrester at the end of 2017 and Quadrant at the end of 2018, which can both be downloaded from the PTC website.


Vendors- the Usual Suspects

The three vendors below are used extensively by traditional PLM industries, namely automotive, aerospace, and industrial and high tech equipment. Their foundation is in engineering software, which gives the advantage over contenders such as SAP and Oracle.


Dassault’s software was developed to support its aerospatial engineering. The company’s 3DEXPERIENCE is the most widely used digital platform and sufficiently scalable that Singapore is using it to build the city’s digital twin. As the leader in this field according to both Forrester and Quadrant, selecting Dassault offers graduates good opportunities in finding work. Dassault do provide their own education, but it is product-related.


PTC was the forerunner in PLM and has an extensive customer base. Recognizing that the future of PLM and IoT are intertwined, PTC acquired IoT platform Thingworx as an offering that integrates with their PLM Windchill solution. Adding to their highly rated technological solutions is their integration of augmented reality (AR) with Vuforia. Forrester identifies them as the market leader, while Quadrant places them as a technology leader, running second to Dassault on customer experience. Again, with PTC experience, a graduate will be able to pick and choose work opportunities across a wide band of industries.


Siemens PLM and Teamcenter also have an established customer base and are used at Purdue and Clemson. Interestingly Forrester placed them 4th in their report, although Quadrant has them hot on the heels of PTC and Dassault. While Siemens were early entrants in the PLM field, they have been a bit slow in innovation, but their platforms are open and easy to integrate.


Other Vendors in the Wings

Aras – Aras is Forrester’s surprise third-ranked PLM vendor. They are open-source and new and while it may be premature to consider them because their market penetration is currently small, they should be watched. They have their own Aras University for PLM learning.

AutoDesk – It may be surprising to find Autodesk outside the leaders, when one considers how pervasive AutoCAD is in both industry and academe. Despite their strong presence as an engineering software vendor, it seems that they have some way to go before their PLM offering can match up to the rest of the market. They declined to participate in the Forrester research.

IFS – UK-based IFS Systems won an award for PLM software of the year awarded by Construction Computing Awards recently. Forrester did not consider them, probably because of their UK rather than the US presence. Like SAP, IFS is more of an ERP than an engineering solution.

Oracle – Oracle became a PLM provider by acquiring Agile, who had a ready-made PLM offering, to be integrated with Oracle’s ERP. Agile had customers in industries such as life sciences. Oracle is trying to move existing customers to their PLM Cloud offering.

SAP – This ERP heavyweight has PLM functionality, but based on their ERP offering, rather than an engineering base. The investment in SAP is very high for any manufacturer, which probably forces company


In Closing

Industry 4.0 is disruptive, but some of the disruptions is not obvious. The need to work collaboratively and the blending of science and the arts are all part of this new wave. Academic institutions have to provide alumni who can function in digital enterprises, and PLM education is necessary for meeting this demand. Obviously there are engineering faculties which have an education path that takes their students into a specific industry, such as oil and gas, but according to Quadrant, industries that were formerly not regarded as customers for PLM, such as consumer goods and retail, are turning to the PLM business model to bring efficiencies to their business. This market is predicted to grow and they will be looking for candidates who understand and can work in a PLM environment.

The Engineering Software Alphabet Soup


Engineering software has grown in leaps and bounds since the first engineering products were developed. Where initially the focus was on computer-aided design, or CAD, now it has extended to provide digitized support to all areas of engineering. There are thousands of engineering software tools available today, many of which fall into categories that have a three-letter acronym to describe them. Managing compliance of all these products with vendor agreements has become an important discipline for the IT business unit, and the license management team in many engineering companies have come to rely on OpenLM in helping them manage the “alphabet soup”. We have compiled a list of some of these acronyms, and the products supported by OpenLM that fall under these categories.

BIM – Building Information Modelling

Building Information Modelling software has evolved from the original concept of 2D and 3D CAD. BIM provides the architect and engineer with 3D models of proposed and existing built structures. It can be used both for individual buildings and for whole ecosystems, like smart cities. The power of BIM is its ability to identify potential construction errors and weaknesses. Some of the BIM tools that OpenLM supports are Autodesk’s Revit and Navisworks, Tekla BIMSight, Dassault Systemes BIM, and BricsCAD BIM.

CAD – Computer-aided design

Computer-aided design heralded the revolution in engineering life, providing a software alternative to the drawing board and pens. Now available for 3D as well as 2D drawing, every engineering and architectural company has at least one CAD tool in their portfolio. While OpenLM is known for its ability to manage licenses for AutoDesk’s AutoCAD, it also supports BricsCAD, PTC Creo, Dassault’s Catia and Ansys, among many others.

CAE – Computer Aided Engineering

Computer-aided engineering performs analytics and simulations on engineering designs, such as computational flow dynamics (CFD), finite element analysis (FEA) and multibody dynamics (MDB) among other disciplines. Typically, such software is composed of a pre-processor, solver and a post-processor, and receives the output of design executed using a CAD or similar design application.

MSC Software were one of the earliest companies offering software for various types of CAE, such as Adams Car. Other CAE software includes Mathworks Simulink, Matlab, and Wolfram’s Mathematica, all of which are in OpenLM’s vendor list.

CAM – Computer-Aided Manufacturing

Computer-aided manufacturing usually describes an automated manufacturing process and is not engineering software per se, but does receive output from CAD and CAE application as part of the value chain and often requires the supervision or intervention of experienced engineers. Many vendors of engineering software offer CAM solutions, including Dassault (Catia), Siemens (NX CAM), PTC (Creo), AutoDesk (Powermill, FeatureCAM and Fusion 360) and HCL Technologies (Camworks). All of these vendor products are supported by OpenLM..

CFD – Computational Flow Dynamics

Computational Flow Dynamics or CFD is used to analyse the flows of gases and liquids via simulation and is one of the CAE analytic tools. Typically, like most CAE tools, CFD analysis is very complex and is run using multiple CPUs and/or GPUs.

Many major vendors offer CFD software, notably Ansys, which has products such as Fluent, CFD and CFX. Other well-known products include Autodesk’s Inventor and CFD, MSC’s Dytran and Solidworks.

ECAD – Electronic Computer Aided Design

Electronic Computer-Aided Design (ECAD) is a special branch of software that is dedicated to the design and production of Printed Circuit Boards (PCBs). The “CAD” in the name is a bit misleading, CAD is focused on design, while the best ECAD products cover the whole board manufacture process from design through to assembly and even parts explosion and bill of materials (BOM) generation.

One of the leaders in this field is Cadence Software with its Allegro software, which is focused on the design aspect, and some other products that are devoted to MCAD, the manufacture aspect, and IDX that allows electronic and mechanical engineers to collaborate on the board design and manufacture. OpenLM also supports Mentor Graphics’Xpedition PCB engineering suite.

EDA – Engineering Design Automation

Another acronym that is synonymous with EDT.

EDT – Engineering Design Tools

EDT is a global term for specialized engineering software, and includes any software that the engineer could find in his digital “toolbox”.

FEA and FEM – Finite Element Analysis and Method

Finite element analysis (FEA) is one of the CAE family of software. FEA software performs simulations and is usually run in batch mode. There is a wide variety of FEA software available, such as Simulia’s Abaqus, Nastran, originally from NASA and now available from MSC and Siemens, Livermore’s LS-DYNA and Ansys. There are many FEA packages that originated in universities and through research. These generally do not come with a license manager, but OpenLM has a feature that allows software like this to be monitored.

GIS – Geographical Information System

Geographic information systems (GIS) have been around for a long time and ArcGIS was the software that OpenLM is founded on. The founders were working at a company that used the ESRI product extensively, and the need for an independent license manager was identified. They started up a company that initially offered a solution for ArcGIS license management, then AutoCAD, followed by software from many other vendors. Today over 900 customers rely on OpenLM to manage their licenses, in industries ranging from Aerospace to scientific research.  

GPU – Graphics Processing Unit

What was originally a circuit board designed to support computer games has become a vital cog in modern computing. The parallel processing capabilities of graphics cards cuts down processing time and costs on intensive software processing required by CAE applications. Nvidia is the leading producer in the GPU field and they have collaborated with some of the leading software vendors, such as Dassault to optimise processing using the Nvidia boards. Recently OpenLM was requested to include Nvidia license management as part of the supported vendor products and this has been done. This simplifies work in advanced simulations and calculations, where cost of processing is an important consideration.

MDB – Multibody Dynamics

Multibody dynamics (MDB) is a CAE software tool. The discipline examines the behaviour of mechanical moving parts and the influences of external forces on these parts. Because the effects of these forces are unpredictable and cause friction and instability, this software can predict weaknesses and other potential flaws as well as mean time to failure. Some major software vendors in this field are Comsol, who have a Multibody Dynamics Module, and MSC Software with its Adams, Adams Car and SimXpert products.

PLM – Product Lifecycle Management

Early engineering software was siloed into different areas of expertise, and did not integrate readily with other applications used in the overall production of a part or product. This has been changed with the introduction of product lifecycle management (PLM) which covers the whole value chain of product development from inception to market. It also goes beyond this in that it supports maintenance during the product’s life up to the time when it needs to be disposed of as it has reached the end of its life. Some of the Enterprise Resource Planning (ERP) software also lays claim to PLM management, but the main players in the PLM space are, Siemens, Dassault and Autodesk.

The Wide World of Engineering Software

These are not the only acronyms in the alphabet soup, and there are also many products that do not have a handy acronym to classify them that are used in various industries and engineering disciplines. Building roads and bridges, communicating via radio and satellite, designing transmission networks and the many facets of the oil and gas industry, all have their own specialized software tools. OpenLM covers many of these products too. If you are looking for effective license management over your valuable software, why not try our product and see if it works for you. You can download an evaluation copy and try it for 30 days at


Siemens PLM Connection 2013

SECOPTENA and OpenLM exhibit on Siemens PLM Connection 2013

23.04.2013 – 24.04.2013

Lufthansa Training & Conference Center Seeheim,

Lufthansaring 1, 64342 Seeheim-Jugenheim

This User Conference is the largest dedicated event for Siemens PLM users in Germany.

The complete Siemens PLM product portfolio like NX, Teamcenter and I-deas are covered in technical lectures, workshops and customer reviews.

Users, Decisions Makers and Product Specialists are gathered by an ambition to enhance the efficiency of their Siemens PLM products. In an intense exchange of experience they get to know the latest of PLM technologies and strategies.

Located in the exhibition space, SECOPTENA will demonstrate how to achieve this goal with proactive license management.

Monitoring – gain comprehensive overview of the most important parameters of your software licenses

  • Status of license server connections

  • Actual utilization of the most important licenses

  • Blocked licenses which are not actively used

Reporting – obtain fundamental usage information as grounds for decisions making

  • Cost allocation – ratio of license utilization per defined groups of users

  • Restrictions in productivity – shortages and denials of specific licenses

  • Compliance – to definitions of license agreements

  • Bundle check – optimal utilization of licenses and packages

Proactive license management – actively control license usage

  • Increase productivity by avoiding license shortage.

  • Secure Compliance through adaption of your license configuration.

  • Adjust your license packages to your real business needs.

Increase communication and reduce your efforts for license administration.

SECOPTENA will show you how,

Just stop by or fix an appointment now!

Email us: or

call us: 08151 77499-55

more information:

SECOPTENA and OpenLM exhibit in the Siemens PLM and GIS Talk conferences:

SECOPTENA and OpenLM exhibit in the upcoming Siemens PLM and GIS Talk conferences:

Siemens PLM Connection 201208.05.2012 to 09.05.2012

Lufthansa Training & Conference Center, Seeheim



GIS Talk 2012

22.05.2012 to 24.05.2012
Dolce Munich, Conference Center & Hotel
Unterschleißheim bei München


Come and meet us there.